Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

Identifieur interne : 001680 ( Main/Exploration ); précédent : 001679; suivant : 001681

Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

Auteurs : Rosa Porcel [Espagne] ; Susana Redondo-G Mez [Espagne] ; Enrique Mateos-Naranjo [Espagne] ; Ricardo Aroca [Espagne] ; Rosalva Garcia [Mexique] ; Juan Manuel Ruiz-Lozano [Espagne]

Source :

RBID : pubmed:26291919

Descripteurs français

English descriptors

Abstract

Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity.

DOI: 10.1016/j.jplph.2015.07.006
PubMed: 26291919


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.</title>
<author>
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Redondo G Mez, Susana" sort="Redondo G Mez, Susana" uniqKey="Redondo G Mez S" first="Susana" last="Redondo-G Mez">Susana Redondo-G Mez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mateos Naranjo, Enrique" sort="Mateos Naranjo, Enrique" uniqKey="Mateos Naranjo E" first="Enrique" last="Mateos-Naranjo">Enrique Mateos-Naranjo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Rosalva" sort="Garcia, Rosalva" uniqKey="Garcia R" first="Rosalva" last="Garcia">Rosalva Garcia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma</wicri:regionArea>
<wicri:noRegion>Universidad Nacional Autónoma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain. Electronic address: juanmanuel.ruiz@eez.csic.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26291919</idno>
<idno type="pmid">26291919</idno>
<idno type="doi">10.1016/j.jplph.2015.07.006</idno>
<idno type="wicri:Area/Main/Corpus">001357</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001357</idno>
<idno type="wicri:Area/Main/Curation">001357</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001357</idno>
<idno type="wicri:Area/Main/Exploration">001357</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.</title>
<author>
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Redondo G Mez, Susana" sort="Redondo G Mez, Susana" uniqKey="Redondo G Mez S" first="Susana" last="Redondo-G Mez">Susana Redondo-G Mez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mateos Naranjo, Enrique" sort="Mateos Naranjo, Enrique" uniqKey="Mateos Naranjo E" first="Enrique" last="Mateos-Naranjo">Enrique Mateos-Naranjo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Rosalva" sort="Garcia, Rosalva" uniqKey="Garcia R" first="Rosalva" last="Garcia">Rosalva Garcia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma</wicri:regionArea>
<wicri:noRegion>Universidad Nacional Autónoma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain. Electronic address: juanmanuel.ruiz@eez.csic.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of plant physiology</title>
<idno type="eISSN">1618-1328</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Mycorrhizae (physiology)</term>
<term>Oryza (metabolism)</term>
<term>Oryza (microbiology)</term>
<term>Photosynthesis (MeSH)</term>
<term>Photosystem II Protein Complex (metabolism)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chlorure de sodium (pharmacologie)</term>
<term>Complexe protéique du photosystème II (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Oryza (microbiologie)</term>
<term>Oryza (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Photosystem II Protein Complex</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe protéique du photosystème II</term>
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorure de sodium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Photosynthesis</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Photosynthèse</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26291919</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-1328</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>185</Volume>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of plant physiology</Title>
<ISOAbbreviation>J Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.</ArticleTitle>
<Pagination>
<MedlinePgn>75-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jplph.2015.07.006</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0176-1617(15)00177-7</ELocationID>
<Abstract>
<AbstractText>Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. </AbstractText>
<CopyrightInformation>Copyright © 2015 Elsevier GmbH. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Porcel</LastName>
<ForeName>Rosa</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Redondo-Gómez</LastName>
<ForeName>Susana</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mateos-Naranjo</LastName>
<ForeName>Enrique</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aroca</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Rosalva</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Lozano</LastName>
<ForeName>Juan Manuel</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008 Granada, Spain. Electronic address: juanmanuel.ruiz@eez.csic.es.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Plant Physiol</MedlineTA>
<NlmUniqueID>9882059</NlmUniqueID>
<ISSNLinking>0176-1617</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal symbiosis</Keyword>
<Keyword MajorTopicYN="N">Non-photochemical quenching</Keyword>
<Keyword MajorTopicYN="N">Optimum quantum yield</Keyword>
<Keyword MajorTopicYN="N">Oryza sativa</Keyword>
<Keyword MajorTopicYN="N">Photosystem II</Keyword>
<Keyword MajorTopicYN="N">Salt stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26291919</ArticleId>
<ArticleId IdType="pii">S0176-1617(15)00177-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.jplph.2015.07.006</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
<li>Mexique</li>
</country>
<region>
<li>Andalousie</li>
</region>
</list>
<tree>
<country name="Espagne">
<region name="Andalousie">
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
</region>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<name sortKey="Mateos Naranjo, Enrique" sort="Mateos Naranjo, Enrique" uniqKey="Mateos Naranjo E" first="Enrique" last="Mateos-Naranjo">Enrique Mateos-Naranjo</name>
<name sortKey="Redondo G Mez, Susana" sort="Redondo G Mez, Susana" uniqKey="Redondo G Mez S" first="Susana" last="Redondo-G Mez">Susana Redondo-G Mez</name>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</country>
<country name="Mexique">
<noRegion>
<name sortKey="Garcia, Rosalva" sort="Garcia, Rosalva" uniqKey="Garcia R" first="Rosalva" last="Garcia">Rosalva Garcia</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001680 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001680 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26291919
   |texte=   Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26291919" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020